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Abstract. Asymptotic solutions are presented for diffusion-controlled wet-chemical etching through a round hole
in a mask. The three-dimensional diffusion field is assumed to be axisymmetric and fully developed. Two time
regimes are considered. The first applies when the etched depth is small in comparison with the width of the mask
opening. In the second, the depth of etching is much greater than the width of the mask opening. Explicit solutions
are found for the shape of the etched surface as a function of the physical parameters. Among other things it is
found that, as long as the etched pits are shallow, etching through small apertures is faster than through larger
ones. The opposite is true for deep pits.
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1. Introduction

Diffusion-controlled isotropic etching is a technique by which a solid, immersed in an acid
solution, is dissolved by a fast chemical process that occurs at the surface of the solid. The
solid is either amorphous, e.g. glass, or when it has a crystal structure, as is the case for silicon,
the etch rate is independent of the crystallographic orientation. During the chemical reaction
the material of the solid and agents in the acid interact in such a way that the solid material
dissolves. This process is used in many technological applications, such as polishing and the
production of objects of a desired shape. In the latter of these applications, the surface of the
body is partly covered with an impenetrable layer, the mask, which prevents the underlying
solid from being attacked directly by the acid. Thus, only selected parts of the body will be
etched. For obvious reasons, this technique is called mask etching. For further information on
wet-chemical etching we refer to [1,2,3].

Although etching has been known for a very long time, the mathematical modelling of
diffusion-controlled etching, for non-trivial geometries, is fairly recent. The so-called edge
effect, which implies large etch rates near mask edges, was described conclusively only as
late as 1984 [4]. Experimental verification of the theory developed in [4] was furnished by two
subsequent papers [5,6]. Two-dimensional etching through a slit was described in [7,8]. The
first of these publications gives asymptotic analytic solutions valid for various time regimes.
In reference [8] a numerical technique was applied to solve the basic equations. The results of
[7] and [8] agree well for the time regimes considered.

Recently, further research has been done on diffusion-controlled isotropic etching, with the
attention being focussed on experimental techniques [9]. Interesting results were obtained for
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Figure 1. Geometrical sketch

the etching of wide slits, showing the mask-edge effect; another range of results were given
for deep etching through narrow slits. In the latter, depths of more than ten times the widths of
the mask openings were attained. The latter results clearly belong to the late-time regime for
which an analytic solution of an asymptotic nature was developed in [7], describing etching
through a slit.

A problem that is still open for mathematical modelling is etching through a round aperture
in a mask. In this paper we shall tackle this problem by applying asymptotic methods of a
kind considered in [7] to derive approximate solutions for various time regimes. Experimental
verification of our findings is still lacking. The solutions, however, are sufficiently interesting
in their own right, in that they provide a clear insight into the parameter dependence of the
salient etching characteristics, both in the early- and late-time regimes. It is hoped that these
results will prompt careful experiments to confirm (or disprove?) these findings.

2. Mathematical model

2.1. DESCRIPTION OF THE PROBLEM

Let us consider a rotationally symmetric geometry as depicted in Figure 1. An etching liquid
or etchant occupies the region �1, which is assumed to extend infinitely far upwards. The
region �2 extends infinitely far downwards and is filled with the material that is to be etched.
The boundary separating the regions �1 and �2 consists of two rotationally symmetric parts,
namely B1, which is a permanently impermeable sheet that prevents the etchant from attacking
the solid, and B2, which is the etching surface. The latter is a moving boundary; initially it is
the flat circular part P\B1, where P is the entire plane in which B1 lies. B1 is called the mask.

If the concentration of the active etching component in the etchant is denoted by c (kmol/m3),
then, in the absence of fluid motion, the diffusion equation holds:

∂c

∂t
= D∇2c in �1 , (t ≥ 0) . (1)

Here t is the time and D (m2/s) is the diffusion coefficient.
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Assuming a diffusion-controlled process, which means that the reaction at the etching
surface B2 proceeds ‘infinitely’ fast, we have the boundary condition

c = 0 on B2 . (2)

In physical terms this condition can be explained as follows: if an active ion, represented by
c, is reacted away infinitely fast during the etch reaction, it will be impossible for diffusion to
replace it by another within a finite time. A diffusion gradient normal to the wall will be set
up, down which the ions diffuse towards the surface. It is impossible for a positive value of c
to be maintained at B2 and, consequently, the concentration will assume the lowest possible
value there, which is zero.

Since the boundary B2 is moving, which means that its position is an unknown of the
problem, a second boundary condition is needed. This condition follows from the relation
between the rate of dissolution of the etching boundary B2 and the gradient of c. This is
usually given as

v = −σe∇c on B2 , (3)

where v is the normal velocity at which the surface B2 proceeds into the solid �2. Further, ∇c
is the concentration gradient at B2 and σe is the etching parameter. It can be shown that (3)
may be put in the more restricted form

vn = −σen · ∇c , (4)

where vn is the normal speed at which the surface B2 moves in the direction of �2 and n is
the normal to B2 pointing into �2.

The condition on the permanent boundary B1 reads

n · ∇c = 0 , (5)

expressing the inertness of the mask. At infinity we have

c → c0 for r → ∞ , (6)

where r is a radius vector with origin at O. Here c0 is the concentration of the active etching
component in pure etchant.

The problem is completed by the initial conditions

B2 = P\B1 , (7)

c ≡ c0 everywhere in �1 (8)

at t = 0.

2.2. OBLATE SPHEROIDAL COORDINATES

Let us begin by defining a Cartesian coordinate system x, y, z, where z measures distance
from the plane of the mask B1 as seen from �1. The coordinates x and y are in this plane
with origin at O. On the basis of this coordinate system we now define oblate spheroidal
coordinates η, θ, ϕ as follows:

x = a cosh η cos θ cos ϕ , (9)
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Figure 2. Geometry in oblate spheroidal coordinates

y = a cosh η cos θ sin ϕ , (10)

z = a sinh η sin θ , (11)

where a is the radius of the orifice P\B1. The ranges of the various variables are

−η0(θ, t) < η < ∞ 0 ≤ θ ≤ 1
2π , 0 ≤ ϕ ≤ 2π , (12)

where −η0(θ, t) coincides with the etching surface B2; η0 ≡ 0 at t = 0 and is a positive
function of θ and t afterwards. Because of the rotational symmetry, that is, symmetry with
respect to the z-axis, the concentration c is independent of ϕ. The mask B1 is represented by
θ = 0 and the z-axis by θ = 1

2π ; this applies to both the upper and lower parts of B1. Regions
in �1 that are infinitely far from the origin O are represented by η → ∞; see Figure 2 for the
transformed geometry. Oblate spheriodal coordinates are described in [10, pp. 31–34], but the
ranges of the coordinates η and θ used there differ from ours.

In terms of these new coordinates, the governing equation (1) reads

a2(cosh2 η − cos2 θ)
∂c

∂t
= D

(
∂2c

∂η2
+ tanh η

∂c

∂η
+ ∂2c

∂η2
− tan θ

∂2c

∂θ2

)
. (13)

The transformed boundary conditions are:

c = 0 at η = −η0 , (14)

∂c

∂θ
= 0 at θ = 0 , (15)

∂c

∂θ
= 0 at θ = 1

2π , (16)

c → c0 for η → ∞ . (17)



A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole 79

Initially (t = 0) we have

c ≡ 0 for 0 ≤ η ≤ ∞ , 0 ≤ θ ≤ 1
2π , (18)

η0(θ, t) ≡ 0 for 0 ≤ θ ≤ 1
2π . (19)

To complete the model, we need to consider the moving-boundary condition (3). It was
argued earlier [4] that this condition can be expressed as

∂f

∂t
+ v · ∇f = 0 , (20)

where f is a functional description of the moving boundary, e.g., f (x, y, z, t) = 0 and ∇ is
the spatial gradient operator. Substitution of (3) in (20) gives

∂f

∂t
= σe∇c · ∇f . (21)

In terms of oblate spheroidal coordinates this reads:

a2(cosh2 η − cos2 θ)
∂f

∂t
= σe

(
∂c

∂η

∂f

∂η
+ ∂c

∂θ

∂f

∂θ

)
, (22)

where again rotational symmetry has been assumed.
We can now be more specific about f . Let us represent it by η+η0(θ, t), i.e., let the moving

surface be given by η = −η0(θ, t). Equation (22) can then be written as

a2(cosh2 η0 − cos2 θ)
∂η0

∂t
= σe

(
∂c

∂η
+ ∂c

∂θ

∂η0

∂θ

)∣∣∣∣
η=−η0

. (23)

2.3. DIMENSIONLESS REPRESENTATION

In order to be able to make sensible judgments about the various physical regimes to which
this problem applies, it is of paramount importance that the model be represented in dimen-
sionless form. Let us introduce the following dimensionless concentration and time, C and τ ,
as follows:

C = 1 − c

c0
, τ = D

a2
t . (24)

The governing equation now reads:

∂C

∂τ
= 1

cosh2 η − cos2 θ

(
∂2C

∂η2
+ tanh η

∂C

∂η
+ ∂2C

∂θ2
− tan θ

∂C

∂θ

)
(25)

and the moving-boundary condition is

∂η0

∂τ
= − 1

β

1

cosh2 η0 − cos2 θ

(
∂C

∂η
+ ∂C

∂θ

∂η0

∂θ

)∣∣∣∣
η=−η0

. (26)

The other boundary condition on the moving boundary is

C = 1 at η = −η0(θ, τ ) (27)
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and that at infinity reads:

C → 0 for η → ∞ . (28)

The model is completed by conditions similar to those of Equations (15), (16), (18) and (19),
where it is understood that Equation (18) applies for C = 1.

The dimensionless model adequately describes diffusion-controlled etching through a cir-
cular orifice and contains only a single dimensionless parameter, β, which is defined as follows
in terms of the dimensional physical parameters:

β = D

σec0
. (29)

The very nature of β suggests that it measures the relative importance of diffusional and
surface effects. A more precise analysis of β was given in [5], where it was argued that it is a
ratio of volumes, namely of that of the molecules in solution, divided by that occupied by these
same molecules in the solid. Estimates of β can be found in [5] for a range of etching systems
that are known to be diffusion-controlled. The lowest value reported in [5] is β = 100. Most
of the other systems considered in that paper, with very common and frequently used systems
among them, show much larger values of β, even as large as 10,000. Thus, we may assume
that it is in the nature of β to be large, so that asymptotic methods can be brought to bear to
simplify problems of the kind considered here.

3. Solutions for small cavities

Looking at the dimensionless time τ , as given by Equation (24), we can draw an important
conclusion for the etching of small cavities. Typical values of the diffusion coefficient D are in
the range of 10−9–10−10 m2/s. This means that, for holes smaller than ten microns (10−5 m),
the dimensionless time τ is larger than unity when the actual time of etching, t , exceeds
one second. Since a typical etching process lasts several minutes, it follows that, for these
small cavities, most of the etching process evolves in the large-time regime. In modern micro-
mechanical technology, cavities as small as ten microns, or even smaller, are quite common.
Thus, there is ample reason to study the large-time regime for etching through a circular mask
opening.

Another reason to pay special attention to small cavities in the context of this paper is that
the exclusion of convection effects is realistic only in the case of small cavities. It is the Péclet
number

Pe = Ua

D
(30)

which decides whether or not convection must be taken into account. Here U is a typical
velocity in the vicinity of the etching cavity. Supposing the velocity gradient of the flow
outside the cavity is α, we may estimate U by

U ∼ αa . (31)

This shows that the value of the Péclet number decreases in proportion to the square of the size
of the cavity. Since D is very small, as was shown above, a must be reduced considerably for
Pe to become much less than unity, which is the condition that decides if convection effects
can be excluded.
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For a source of constant strength and shape a three-dimensional diffusion field becomes
stationary for sufficiently long times. By source we mean that a value of the field variable,
here C, is imposed at a fixed location for the duration of the process. In etching C is held
at the value 1 on the bounded etching surface, so the strength is indeed constant. However,
the shape of the source is not, but slowly varying, or rather slowly progressing. Thus, the
‘stationary’ diffusion field is dragged along with the slowly progressing source. The latter
becomes important when the etching surface has progressed deeply into the material, that is,
far below the mask.

3.1. SHALLOW CAVITIES

3.1.1. Outer solution
Since the dimensionless etching parameter β, as defined by Equation (29), is very large,
the etching surface has hardly moved when the diffusion field has already reached a quasi-
stationary state. It is useful, therefore, to consider the problem defined by the time-indepedent
version of Equation (25), namely

∂2C

∂η2
+ tanh η

∂C

∂η
+ ∂2C

∂θ2
− tan θ

∂C

∂θ
= 0 (32)

in

0 ≤ η < ∞ , 0 ≤ θ ≤ 1
2π , (33)

where the use of the boundary η = 0 points to the fact that the etching boundary has not moved
significantly and can be approximated by this value, which is a zeroth-order approximation.

Since the boundary conditions are those defined by (14–17) with η0 ≡ 0, the solution is
simply

C = 2 − 4

π
arctan eη , (34)

whence, to leading order,

∂C

∂η
= − 2

π

1

cosh η
,

∂C

∂θ
= 0 . (35)

This can be substituted in (26) to yield a leading-order equation for the displacement of the
etching boundary:

(cosh2 η0 − cos2 θ) cosh η0
∂η0

∂τ
= 2

π

1

β
; η0 ≡ 0 at τ = 0 . (36)

This yields

1
3 sinh3 η0 + sin2 θ sinh η0 = 2

π

1

β
τ . (37)

The interpretation of this equation requires some care. We should realize that the analysis
of this section applies for small values of η0, i.e., 0 ≤ η0 � 1. Thus, the right-hand side of
(37) must be small, so that

1 � τ � β . (38)
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This is a realistic condition, since β � 1. The left-hand part of (38) expresses the large-time
condition for an almost stationary diffusion field.

Since η0 � 1, the second term on the left-hand side of Equation (37) dominates, except
when θ is sufficiently close to zero. Thus, away from the mask edge, the solution for η0 is
approximately given by

η0 ∼ 2

π

1

β

τ

sin2 θ
(39)

or in dimensional Cartesian coordinates:

z

a
∼ 2

π

τ

β

a√
a2 − x2 − y2

. (40)

This expression clearly fails near the mask edge, that is for θ = 0 or x2 + y2 = a2, Equa-
tion (37) shows that the left-most term on the left dominates when θ ↓ 0 and the solution at
θ = 0 would appear to be given by

η0 ∼
(

6

π

τ

β

) 1
3
. (41)

However, this solution is false! The analysis of a related problem studied in [4] shows that the
displacement of the boundary is a leading-order phenomenon in the immediate vicinity of the
mask edge. It cannot be obtained by a straightforward perturbation approach of a kind as used
above. The correct approach is similar to that followed in [4] and is presented in the following
subsection; see Equation (64).

3.1.2. Mask-edge region. Inner solution
For a proper description of the problem in the mask-edge region we introduce scaled variables
θ̄ , η̄, η̄0 and C̄ as follows:

(θ, η, η0) = β−1/3(θ̄ , η̄, η̄0), C = 1 − β−1/3C̄ . (42)

Thus, for β � 1, the original variables θ, η, η0 are � 1 and C ∼ 1 for values of the new
variables that are of order unity.

Substituting (42) in (32) and letting β → ∞, we see that the governing field equation is
reduced to

∂2C̄

∂θ̄2
+ ∂2C̄

∂η̄2
= 0 . (43)

By the same token, and using

cosh2 η̄0 − cos2 θ̄ = β−2/3(θ̄2 + η̄2
0)+ O(β−4/3) , (44)

we can write the moving-boundary condition (26) as

η̄ + η̄0 = 0 : ∂η̄0

∂τ
= 1

θ̄2 + η̄2
0

(
∂C̄

∂η̄
+ ∂C̄

∂θ̄

∂η̄0

∂θ̄

)
. (45)

which shows indeed that the boundary displacement is now a leading-order effect, rather than
a perturbation, as was the case with the problem of Section 3.1.1.

The other boundary condition on the moving boundary reads:
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η̄ + η̄0 = 0 : C̄ = 0 . (46)

It is understood that η̄0 is a function of both θ̄ and τ .
What remains is to define a condition for η̄ → ∞. This is obtained by matching and

a proper taking of limits. If in (42) a large, but fixed value of η̄ is taken, upon which β is
allowed to tend to infinity, then η is seen to approach zero. The mask-edge, or inner solution
that we consider here is to merge smoothly with the outer solution (34) in the limit we defined
a moment ago. Thus, all we have to do is to insert the transformed variables (42) into (34) and
then expand for β → ∞. This gives

1 − β− 1
3 C̄ = 2 − 4

π
arctan eβ

−1/3η̄ = 1 − 2

π
β−1/3η̄ + O(β−2/3) . (47)

From this we see that the following condition holds:

C̄ → 2

π
η̄ for η̄ → ∞ . (48)

Strictly speaking, we must also define a condition for θ̄ → ∞. Since, to first order, the outer
solution does not depend on θ̄ , we simply have, by a process similar to that which led to (48):

∂C̄

∂θ̄
→ ∞ as θ̄ → ∞ . (49)

The problem defined by Equation (43) and the boundary conditions (15), (45), (46), (48)
and (49) admits a similarity solution. To find it, let us introduce

(θ̄ , η̄, η̄0(θ̄ , τ )) = Aτ 1/3(ρ, φ, φ0(ρ)) , C̄ = Bτ 1/3u , (50)

where A and B are constants yet to be determined. Substitution in the above equations yields

∂2u

∂φ2
+ ∂2u

∂ρ2
= 0 , (51)

φ + φ0(ρ) = 0 : u = 0 , (52)

1

3
A4

(
φ0 − ρ

dφ0

dρ

)
(φ2

0 + ρ2) = B

(
∂u

∂φ
+ ∂u

∂ρ

dϕ0

dρ

)
, (53)

ρ = 0 : ∂u

∂ρ
= 0, (54)

ρ → ∞ : ∂u

∂ρ
→ ∞, (55)

φ → ∞ : u → 2

π

A

B
φ. (56)

By choosing

A =
(

3

2πσ

)1/3

, B = 2

πσ

(
3

2πσ

)1/3

, (57)

where [4, Equation 49]
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σ = π−3/2#( 1
4 ) , (58)

we see that the problem defined by (51)–(56) is exactly the same as that defined in [4, Equa-
tions (81–85)], where, for completeness, we have added condition (55) here. Thus, we can use
the results obtained in [4].

3.1.3. Zero-order approximation to full solution
An approximate solution for η0 that is uniformly valid for β � 1 and for all values of θ in the
interval 0 ≤ θ ≤ 1

2π , with the mask edge θ = 0 included, can now be derived by a process
similar to that explained in [4]. The leading term of a composite expansion is defined by

η0|inner + η0|outer − common part, (59)

where the common part is the part that the inner and the outer expansions have in common at
the level considered, which here is the zeroth order. In the previous two subsections we derived
the leading terms of the expansions. Therefore, η0|inner is approximated by the leading-order
solution (39) and, from (42) and (50), the leading-order outer solution is A(τ/β)1/3φ0, where
φ0 is given by the values listed in [4, Table 2]. Later, Howison and King [11] succeeded in
finding an analytic solution for φ0. They used a method devised by Polubarinova-Kochina [12]
to solve free-boundary problems in porous media.

We may obtain a leading-order expression for the common part by expressing (39) in terms
of the inner variable (50), assuming a fixed, but large value of ρ and then looking at the
behaviour for β → ∞. This gives

φ0 ∼ 2

π

1

A3ρ2
= 4

3
σ

1

ρ2
. (60)

This corresponds with the result reported in [4, Table 2].
In view of the above, a leading-order expansion in β can now be given for the boundary

displacement, namely

η0 ∼ 2

π

τ

β

1

sin2 θ
+

(
τ

β

)1/3

A

{
φ0(ρ)− 4

3
σ

1

ρ2

}
. (61)

Here we have used (39), (42), (50), (59) and (60).
This approximate solution is shown in Figure 3 for 0 ≤ θ ≤ π

2 . Clearly, η0 depends only
on θ and the combination β/τ . By (38) the latter can only be assigned large values. When
β/τ ↓ 1, the similarity part of the solution – this represents the solution in the mask-edge
region – tends to fill the entire domain 0 ≤ θ ≤ π

2 and the solution has long since lost its
validity. From then on another time regime sets in.

Using the coordinate transformation (9)–(11), we may recast (61) in terms of the more
familiar Cartesian coordinates. Because of rotational symmetry, it is sufficient to present the
function z0(r), where r = √

x2 + y2, which is to be distinguished from the variable r used
in Equation (6). From (9)–(11) and η = −η0(θ, τ ), this function, representing the boundary
displacement, is given implicitly by

r = a cosh η0 cos θ ; z0 = −a sinh η0 sin θ (62)

together with Equation (61). This function is depicted in Figure 4 for various values of the
reduced time τ/β. Clearly, the edge effect is relatively strongest for small values of the time.
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Figure 3. Leading-order composite expansion for
boundary displacement η0(θ) defined by Equa-
tion (61) for: (a) β/τ = 1, (b) β/τ = 10, (c) β/τ =
100, (d) β/τ = 1000, and (e) β/τ = 10000.

Figure 4. Evolution of the etching boundary −z0(r)

as a function of τ/β. Curves depicted are for τ/β =
0·01 (0·01) 0·3. Here z0 measures distance from the
plane of the mask and r distance from the axis of
symmetry.

This is also borne out by the fact that, in the immediate vicinity of the mask, the etched depth is
proportional to (τ/β)1/3 (see Equation (63) below), whereas in the central part of the aperture
etching proceeds in proportion to τ/β (see Equation (39)).

To conclude this section, we return to the spurious value η0|θ=0 given by Equation (41). The
correct asymptotic approximation follows from (61) by letting θ ↓ 0. The singular behaviour
of the first term on the right is cancelled by an equally singular term to the far right, whence
we have

η0|θ=0 = A

(
τ

β

)1/3

φ0(0)+ O(τ/β) . (63)

Since φ0(0) ≈ 1·042 (from [4]), or φ0(0) = σ 1/331/6 (from [11]1 , we have

η0|θ=0 = 31/2(2π)−1/3

(
τ

β

)1/3

≈ 0·939

(
τ

β

)1/3

. (64)

The corresponding coefficient in (41) is 1·241. Thus, the spurious solution (41) overestimates
the strength of the edge effect. This can be explained by the following argument. Equation (41)
was obtained by the analysis of a model that assumed a flat immovable surface from which
diffusion could take place freely in all directions above it in a three-dimensional space. The
correct analysis, however, involves, to first order, an etching surface that is partly overhung
by a mask. Diffusional transport in all directions in the space above the mask is possible only
after transport of the etched materials has been encumbered in the region hidden under the
mask. Thus, although etching is much faster in the mask-edge region, it is not as fast as the
straightforward perturbation analysis of Section 3.1.1 predicts.

We remark in passing that the parameter σ no longer appears in the explicit part of Equa-
tion (64). This is a pleasing observation, since that parameter arose in [4] in a part of that
analysis which has no bearing on the problem discussed in the present paper.

1A personal communication with the authors of [11] clarified two misprints in their paper: on p. 173, line 4, the
power −2/3 should read −7/3; the power 1/3 in the third displayed equation on p. 173 should read −1/3.
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3.2. DEEP CAVITIES (τ � β)

We shall now turn to the etching of deep cavities, i.e., η0(θ, τ ) � 1. Because of the inertness
of both boundaries θ = 0 and θ = 1

2π , since ∂C/∂θ = 0, it can be understood, on physical
grounds, that η0 will become independent of θ eventually, that is, for sufficiently large τ . The
appropriate τ -regime far exceeds the right-most bound of Equation (38). Thus, invoking the
quasi-stationary model, we have Equation (32), but now with

C = 1 at η = −η0 . (65)

Again, we find a solution independent of θ that reads:

C =
1
2π − arctan eη

1
2π − arctan e−η0

. (66)

Inserting this into the equation for the moving boundary (26), we have

dη0

dτ
∼ 1

πβ

1

cosh3 η0
, (67)

where the term arctan e−η0 has been set equal to zero in view of the limit η0 → ∞. Also,
since cosh η0 � 1, the term cos2 θ can be disregarded in this leading-order analysis. In fact,
this observation is in line with our assumption that eventually the solution will be independent
of θ . This being an asymptotic analysis describing the final stages of the etching process
for τ → ∞, it is impossible to impose an initial condition. Therefore, the general solution
involves a time-shift parameter τ0. Integrating (67), retaining the dominant term only, that is,
using the approximation

cosh η0 ∼ 1
2eη0 , (68)

we have

η0 ∼ 1

3
log

(
24

πβ
(τ + τ0)

)
. (69)

It is obvious that this solution applies only when τ � β; this time regime is completely
outside the range defined by Equation (38), as it should be.

Recasting Equation (69) in terms of the original Cartesian coordinates through (9–11),
dropping the time-shift parameter τ0 and using dimensional variables, we have

zb ∼ − (
3
π
c0σeat

) 1
3 , (70)

which shows that eventually the depth of etching zb progresses as the one-third power of the
time when zb � a. The etched cavity approaches a spherical shape. The actual time regime
in which this occurs is

t � a2

c0σe
= β

a2

D
. (71)

It is interesting to note from (70) that the total volume etched out is

V = 2

3
π |zb|3 = 2c0σeat , (72)
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Figure 5. Schematic illustration of the various time regimes. Part A depicts the initial stage when the diffusion
field, as indicated by the upper arrows, has not yet progressed far into the etchant; here the arrows indicate
symbolically the strength of the concentration gradients. In B the diffusion field has become stationary; here
the arrows and the dotted circle indicate symbolically the uniform spatial extent of the diffusion field. Further, (a)
refers to the case described in Section 3.1 and (b) to that in Section 3.2.

which is proportional to t . This corresponds to the fact that the diffusion field outside the
cavity assumes a steady state, which corresponds to a constant source strength. One could
consider this as the result of an outer diffusion field that is fed continually by the value (for
η0 � 1)

C = π/4
π
2 − arctan e−η0

∼ 1

2
(73)

at η = 0, which is in the mask opening in the plane of the mask. This result follows by
substitution of η = 0 in Equation (66). Thus, for deep holes, the concentration in the mask
opening is very close to half of that of the pure etchant, which means that, eventually, the
concentration drop outside the cavity is the same as that within the cavity.

4. Results and discussion

The various time regimes, and their positions within the general time frame, are illustrated
schematically in Figure 5. In Figure 5A the situation of the initial time regime has been
sketched. The arrows above the plane of the substrate are indicative of the strength of the
diffusion field c, with long arrows meaning large gradients. The spatial extent of this field
above the plane is much less than 2a, which is the diameter of the aperture. This time regime
prevails as long as

t � a2

D
. (74)

For small apertures (a < 10−5m) this is less than a second and therefore of limited im-
portance for a typical etching process lasting at least several minutes. In this time regime
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diffusion is essentially a one-dimensional process in the central part of the aperture, but fully
two-dimensional in the mask-edge region. This problem was considered in [4]. The analysis
revealed a strong mask-edge effect.

The time regimes considered in this paper are sketched in Figure 5B. They occur for

t � a2

D
, (75)

when the diffusion field, as indicated by the arrows, is fully developed and stationary. For
these larger times we succeeded in finding two distinct time regimes for which the problem
was amenable to asymptotic analysis. The first of these regimes, indicated by (a), is defined
by (38). It is valid as long as the depth of etching is small in comparison with the width of the
aperture. The second time regime refers to τ � β, when the depth of etching far exceeds the
width of the mask opening.

The advantage of the asymptotic solutions is, of course, that these afford a means of de-
termining explicitly how the etching process depends upon the various physical parameters;
they also lend structure to the problem as a whole in that they accentuate its salient features.
A fully numerical approach is needed to determine the temporal development of the etching
surface outside these specific time regimes. It cannot be denied, however, that the structure
alluded to above should be of great help in carrying out the numerical task and interpreting
the results derived therefrom.

We shall now interpret our results to see how the etched depth depends upon the physical
parameters. From (24), (29), (39) and (62) we have the following expression for the depth in
the centre (θ = 1

2π) of the etched pit for case (a) as depicted in Figure 5B, that is, for shallow
pits:

|zb| ≈ 2

π

σec0t

a
= 2

π

Dt

a

c0Ms

mρs
, (76)

where we have used [5, Equation 9] to derive the right-most part of (76). Here Ms is the
molecular weight of the solid (kg/kmol), ρs its density (kg/m3) and m the number of molecules
of active etching component required to dissolve one molecule of the solid. Clearly, in (76)
the right-most fraction is a dimensionless group and the one preceding it has the dimension of
length. Thus, for 1 � τ � β, the etched depth is inversely proportional to a. In other words:
smaller holes etch raster (compare d|zb|/dt) than bigger ones. Of course, one should keep in
mind that, for this law to hold, there must only be diffusional transport and the diffusion field
must be fully developed (τ � 1). At short distances, diffusion is a very powerful transport
mechanism. When the source gets smaller, the diffusion gradient near the source becomes
larger, namely O(c/a), hence the increased etch rate.

The underetch effect follows a rule different from that shown in (76). From (62), (64), (24),
(29) and the definition of σe given in [5], we have

r|θ=0 − a = a cosh η0 − a ∼ 1

2
aη2

0 = 3

2(2π)2/3

(
D2t2

a

)1/3 (
c0Ms

mρs

)2/3

(77)

for the distance etched under the mask. The maximum depth of etching occurs in the imme-
diate vicinity of the mask, as was shown before in [4]. It follows the same rule as that of
Equation (77), but the coefficient is twice that of (77). This follows from [11] and the footnote
below the present Equation (63). Again, the depth of etching increases as a gets smaller, but
the effect is less pronounced than that of (76) which applies to the centre of the cavity.
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The corresponding result for case (b) of Figure 5B, which applies to deep holes, that is for
τ � β, follows from Equation (70) and [5, Equation 8], namely

|zb| ≈ (
2

π
)1/3(Dta)1/3

(
c0Ms

mρs

)1/3

. (78)

It follows that smaller holes now etch more slowly than bigger ones, where again the above
provisos should be heeded. Reference [9, p. 64] shows results of the deep etching of four
cavities with mask-opening sizes of 4, 10, 50 and 100 µm. In these experiments silicon wafers
were etched with an hydrogen-fluoride (HF) solution. The etching times were the same for
each result and of the order of an hour. The corresponding depths of etching were 49, 56, 68
and 77 µm, showing indeed a trend similar to that of Equation (78). A direct comparison is
impossible for the following reasons: (i) in [9] etching occurred through slits instead of round
apertures; (ii) there is no way of knowing that convection effects were suppressed sufficiently.
Convection may have played a role, particularly for the larger mask-opening sizes, since HF
etching of silicon generates heat. Even so, the comparison is satisfactory in that the trend is
fully corroborated. The explanation given by Tjerkstra [9, p. 65] for the slower etching of
smaller, deep holes appears to be the correct one. All of the etched material must perforce
leave the cavity through a narrow aperture before it can diffuse freely into the etchant outside.
Apparently, this effect tends to become stronger, the smaller the mask opening. Further exper-
imental results on two-dimensional wet-chemical diffusion-controlled etching can be found in
[2, Figures 8.10 and 8.11].

Apart from the opposite trend of |zb| with respect to a, as expressed by Equations (76) and
(77) on the one hand and Equation (78) on the other, its behaviour vis-à-vis c0, D and t is the
same for the two cases, albeit that the exponent is different. In full agreement with what can
be expected intuitively, |zb| increases when any of these parameters increases. It is interesting
to note that the exponents of t,D and c0 are equal to unity in (76), have the lower value of 2

3

in (74) and reach a minimum value of 1
3 in (78).

5. Concluding remarks

In this paper we have presented solutions describing the temporal development of an etching
surface for wet-chemical diffusion-controlled etching of a substrate that is covered by an im-
penetrable mask featuring a round aperture. By applying asymptotic techniques, we succeeded
in finding solutions pertaining to two separate time regimes. The analysis has been greatly
facilitated by the observation that, in three-dimensional space, a diffusion field resulting from
a finite-size source eventually becomes stationary. For small cavities this stationary state is
attained within a time span that is only a small fraction of the total etching time. Because of
this, the analysis of the three-dimensional problem is simpler than that of the corresponding
one in two dimensions [7].

Two different time regimes were recognized as being particularly amenable to asymptotic
analysis leading to explicit results. The first of these occurs when the etched cavity is still
shallow. This case reveals the now well-known phenomenon of fast etching near mask edges
in the diffusion-controlled etching regime. It was found that small holes etch faster than ones
that are wider. In the second time regime, when etching has gone down to depths much greater
than the width of the mask aperture, the opposite effect is shown: the etching speed decreases
as the aperture gets smaller.
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There is ample room for further research regarding this particular problem. An attempt
could be made to raise the asymptotics to higher levels of accuracy by adding further terms.
This, while being possibly interesting from a mathematical point of view, would not substan-
tially increase our knowledge of the physics of the problem as laid down, for instance, in the
Equations (76–78). Having understood the basic physics underlying this problem, as we have
attempted to do in this paper, one should now proceed to solve the basic system of governing
equations numerically, so as to get a full overview of the temporal development of the etching
surface. Work is in progress to achieve this [13].

Finally, we remark that it is absolutely essential that models of a kind as investigated here
be validated by suitable experimentation. Partial, be it qualitative, support for some of our
results has already been furnished by [9]. Careful experiments are needed to be able to bring
theory and experiment on an equal footing, so as to serve as ideal complements of one another.
Only then will it be possible to combine theory and experiment to determine accurate values
of the physical parameters, supposing, of course, that these experiments confirm the theory.
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